

EXASCALING AND FEDERATION: USING BRAIN RESEARCH AS SCIENCE DRIVER

Dirk Pleiter | SOS23, Nashville | 28.03.2019

Overview

- Science domain: Human Brain Project
- Annotated use case analysis
- Science cases and use case scenarios
- Reflection on session chair's questions

Human Brain Project and Fenix

Human Brain Project

- Overall research challenge
 - Create an understanding of brain at different spatial and temporal scales
 - Help to address dysfunctions of the brain causing mental diseases including Alzheimer
- Specific research topics
 - Create high-resolution atlases of the human brain
 - Create realistic models of the human brain
 - Analysis of patient data

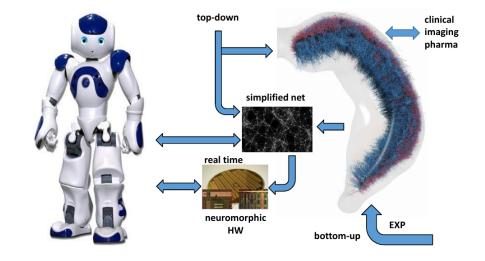
Fenix and the ICEI project

- Consortium of BSC, CEA, CINECA, CSCS, JSC
 - Aim for harmonising and federation of services
- Services provided through ICEI
 - Computing services
 - Interactive Computing Services
 - Scalable Computing Services
 - VM Services
 - Data services
 - Active Data Repositories
 - Federated Archival Data Repositories
 - Data Mover, Location and Transport Services
 - Federation level services
 - Authentication and Authorisation Services
 - User and Resource Management Services (FURMS)

FENIXRI

Science Cases and Use Case Scenarios

Brain modelling


• Data-driven modelling of the brain

Brain atlas development

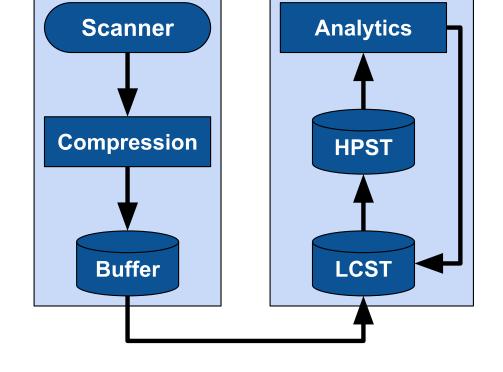
• Histological data analysis, image registration

Sharing of data assets

- Allow researchers to access data assets from various data sources
 - Simulation data
 - Experimental data

[M. Migliore]

Annotated Use Case Diagrams

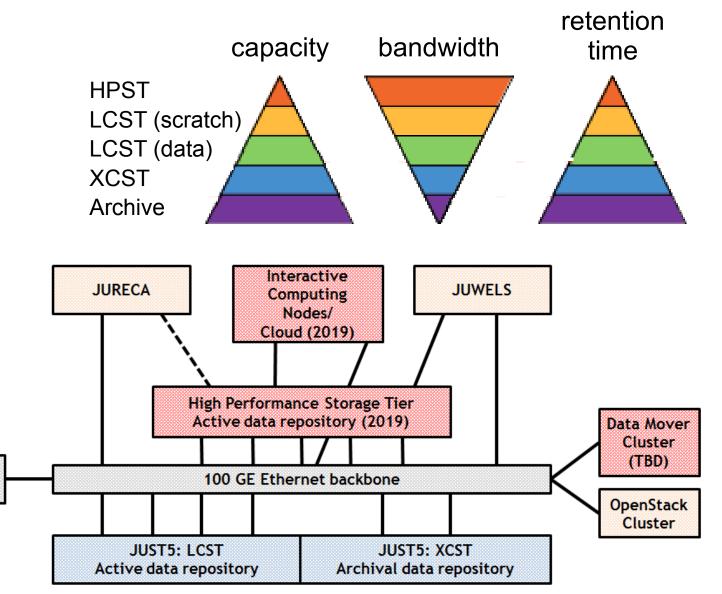

Abstract model components

- Data ingest
- Data repository
- Processing station
- Data transport

Use case/workload specific annotation of components

- Data transport
 - Maximum/average required bandwidth
 - Interface requirements
- Data repository
 - Maximum capacity requirements
- Processing station
 - Data processing hardware architecture requirements
 - Required software stacks

5


Storage Hardware Architectures in Modularised Setup at JSC

Multiple compute modules

- Different capabilities
- Different user communities

Diversification of storage tiers

- High Performance Storage Tier
- Large Capacity Storage Tier
- eXtended Capacity Storage Tier
- Tape archive

Internet

PRACE

Data Sharing and Federated Data Stores: Requirements

Integration in AAI + consistent access control

- Exceeding local control domains \rightarrow challenge of agreeing on common policies
- Different storage technologies do not provide compatible access control mechanisms

Storage accessible from outside the data be centre

• Need to move away from silo approach

Web-based clients

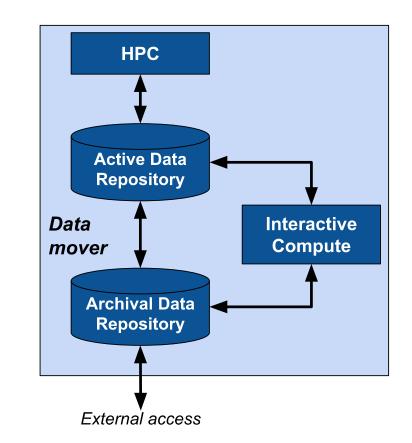
• No proprietary clients, easy to deploy by any user

Persistent references

• Keep data findable

Approach in Fenix

Active Data Repositories

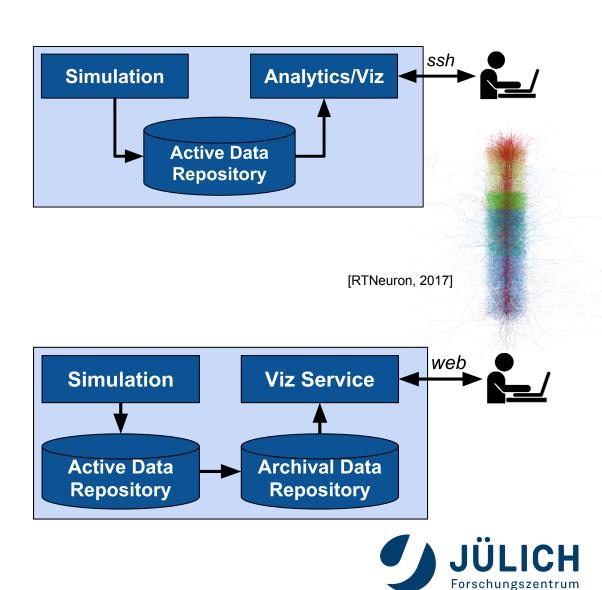

- Data repository localized close to computational or visualization resources optimised for performance
- Used for storing temporary slave replica of large data objects
- Typical implementation: PFS with POSIX API

Archival Data Repositories

- Data store optimised for capacity, reliability and availability
- Used for storing large data products permanently that cannot be easily regenerated
- Implementation: Object store with SWIFT interface

Data Mover Service

- Asynchronous data transfer between active and archival data repositories
- Optionally controlled by resource manager


Simulation and Post-processing: Use Case Scenario

Use case scenario: Interactive supercomputing

- Scenarios
 - Online monitoring
 - Interrupt simulation, analyse data, resume simulation
- Challenges
 - Provide interactive compute services
 - Generic data transport layer

Use case scenario: Sharing of simulation data

- Access to simulation data to external users through web-based visualisation services
- Challenge: Make data accessible externally

Simulation and Post-processing: Software Architectures

Limitations of today's architectures

- Lacking data and memory (storage) awareness
- Few abstractions exist that capture data semantics of applications, so reasoning about data movement and memory in software is impossible

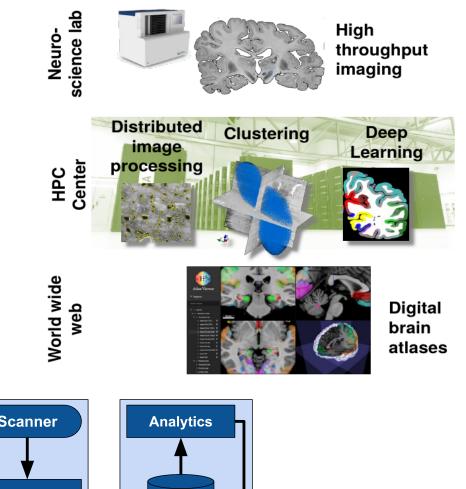
Maestro approach

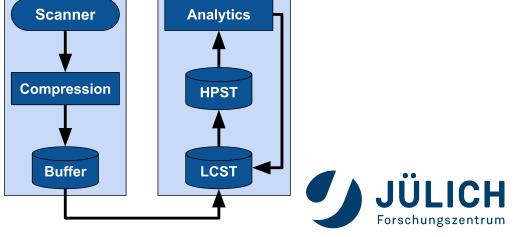
- Develop new data-aware abstractions
- Design a middleware and libraries that allow for modelling of memory/storage hierarchy, reason about data transport, manage data object movement etc.

Key abstractions

- Core Data Objects + Core Data Object Pool
- Producer-consumer API: declare, give, take, dispose

Partners: Appentra, CEA, Cray, CSCS, ECMWF, Seagate, FZJ


Data Analytics/ML: Science Case


Research goal

• Accurate, highly detailed computer model of the human brain based on histological input

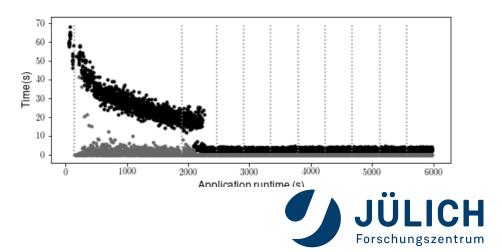
Approach

- Create high-resolution 2-dimensional brain section images (1µm resolution)
- Re-construct 3-dimensional models from these images
- Reconstruct nerve fibers in histological brain sections
- Automatised analysis of high-resolution images

11

Data Analytics/ML: Requirements Analysis

Data production


- Data acquisition using 8-9 microscopes at ~15 MByte/s \rightarrow ~10 TByte/day
- Archival data increase 1-2 PByte per year

Data access speed requirements

- Overlapping learning and I/O $\rightarrow \Delta t_{IO} \leq \Delta t_{Iearn}$
- Assume $\Delta t_{IO} = I_{IO} / B_{IO} \rightarrow B_{IO} \ge I_{IO} / \Delta t_{learn}$
- For single NVIDIA P100 we determined a minimal required bandwidth $B_{10} \ge 1.1$ GByte/s

Case for I/O optimisation and caching

- Saturating single node bandwidth accessing PFS challenging
- Options for relaxing PFS bandwidth requirements by exploiting data-locality through a software managed data cache (in HPST or node local memory/storage)

[Oden et al., PDP 2019]

Reflection on session chair's questions

How will changing requirements for HPC platforms is influence design?

• Yes: Hardware architectures, system software, mode of operation

Will we see a dramatic shift in the types of applications and use cases for HPC?

• To some extend : New application domains, but mainly extended workflows (HPC in the loop)

What types of data-management services do you expect to be common?

• Data federation services, data transport services

How should we share/arbitrate use of shared, in-system storage among the different parts of the software stack?

- Usage models not yet fully clear, but observe some common patterns
- Need for co-design
 - Provide new capabilities to be explored by pioneering users
 - Improve analysis of science cases

