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Science challenges for a smart AN
supercomputer: summil

What can a smart supercomputer doe

Leadership science challenges for a smart supercomputer:

Identifying Next-generation Materials
By training Al algorithms to predict material
properties from experimental data,
longstanding questions about material
behavior at atomic scales could be answered
for better batteries, more resilient building
materials, and more efficient semiconductors.

Predicting Fusion Energy

Predictive Al software is already helping
scientists anticipate disruptions to the volatile
plasmas inside experimental reactors.
Summit’s arrival allows researchers to take
this work to the next level and further
integrate Al with fusion technology.

Deciphering High-energy Physics Data
With Al supercomputing, physicists can lean on
machines to identify important pieces of
information—data that’s too massive for any
single human to handle and that could change
our understanding of the universe.

Combating Cancer

Through the development of scalable deep
neural networks, scientists at the US
Department of Energy and the National
Cancer Institute are making strides in
improving cancer diagnosis and treatment.

%OAK RIDGE

National Laboratory



Our Tiered and Peered Data-Rich Landscape

*We are in "Tiered” territory
-What is this doing for data science?

- How does this inform our needs looking
forwarde

o "Peered” facllities for data-intensive
sclence
- Cross-tacility data-intensive science

- The gap to address and our needs going
forwarde
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Example 1: Exascale Climate Application

SC 18 Gordon Bell Award: Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda, Nathan Luehr,
Everett Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe, Massimiliano Fatica, Prabhat, Michael Houston;
LBNL, NVIDIA, ORNL

Data Staging

Dataset Size Required BW GPFS/LUSTRE BurstBuffer NVM/e or DRAM

(27K GPUs)
20 TB (~63K samples) | 3.8 TB/s ~400 GB/s ~26 TB/s

® 750 training samples/GPU
(~15 GB), sample w/ replacement

® cach file will be read at most once
from FS

. e e files shared between nodes via MPI
PR ( - l A oy )

FETTETET T EEEFTEETTmat.— Nﬁﬂsc

Pl -"_

% OAK RIDGE Picture from Thorsten Kurth's Dec. 2018 ASCAC presentation.

National Laboratory



Example 2: Simulation/ML-DL Interleaving

Marterials Application: Surrogate modeling for MC
Initial Stage

DNN-MC Classifier
First principles x\(T e

calculation
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Data Science and Learning on the Memory Hierarchy

Traditional
Node: PCA, K-
CORAL 2 Description Means, etc. excel
Benchmark Svite due to the node’s
Big Data Analytic  PCA, K-Means, and memory, CPU,
Suite (BDAS) SVM (based on ; and on-chip
obdR) u |t N e bandwidth
Deep Learning Suite  CANDLE, CNN, oo 8(TeT . & | b =ea
(DLS) RNN, and ResNet-50 . U1E W BT ; l
(distributed e R e e e o et |
memory) ) (™= 7 _
Deep Learning Codes ezl Bl /S |k ]
(CNN; ResNet50; ..) gl 8 |5, . gl 8 |5,
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tensor operations. v

Code suites are in the CORAL (Collaboration of Oak Ridge, Argonne, Livermore
¥0akRIDGE  Jaboratories data benchmark suite: https.//asc.lInl.gov/coral-2-benchmark$p
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Accommodating the Data-Science Landscape

Model-Driven and Data-Driven and
Simvulation-Heavy Analytics (ML/DL)
Workloads Workloads

Single Center-Wide Read-Intensive Partitioned
Namespace Namespace OK

Write Fraction (~15%) of HBM High |IOPs
Rapidly (~5 Minutes)

Large Capacity Retention Large Capacity Retention

N-N, N-1 write access Small, Ranhdom Reads
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Tiering has moved us towards: “Convergence”
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@ich tiered data hierarchy is a necessity given our
technology (bandwidth, latency) and cost (per bif)
landscape!

node-local storage, and node-local and center-wide
s\’rordge are needed.

\

Tools to help the user to seamlessly process data across

)

Shameless plug: ORNL is working on a couple - Spectral and Symphony
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Fogging up the data-story...

e Advanced 72
Photon Source Betir
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Scalable Cross- Facmiy Workflow and Ecosysiem for Data Science

» CADES,
> Cloud SHPC, DGX
» Cross-Facility Data
vy s
> PANDA, Flrev.vor{gvs,} Scalable Computing
Pegasus, Swift,

» ADIOS Workflows:

» Kubernetes Staging and Cross- > Artifacts and
» Slate/Marble System and Cross- /\A‘\ Insights
> Slate/Onyx Facility

> Singularity Th TR

Capability Compute at OLCF: 'I"“I"""""

Simulation & ——— ,
Compute/Data Workflows at Scale =7l .ﬁ - ‘Au s Data Life-Cycle:
Dissemination, Sharing, » Constellation
Analytics Products » EDEN, Visit,
Paraview, SIGHT
» CrossBOW
» Support:  PDACS,

» Well-known runtime and

rogramming language Analytics: /
gxtgnsions. Galaxy, Zeppelin, ...
» Exploring new scheduling » pbdR
approaches. » Spark on Demand
» TensorFlow, PyTorch, Keras,
Caffe, MxNet



To Conclude..

1. Tiering: Need tools to support data processing across
heterogeneous compute and memory hierarchy, node-local
storage, and node-proximal and center-wide storage.

2. Peering: Need tools to support distributed data
read/process/write abstractions across data-stores in data-
Infensive facilities.

#1 and #2 call for similar conceptual abstractions of
programming primifives. The implementation will differ based on
data affinity, currency, and latency awareness. Both could use
an underlying data handling layer/API.
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Thank Youl!
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Peering !
Reinterpreted
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